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Various Applications

The direction of the PC1 axis and its relative strength may reflect a
special role for this geographic axis in the demographic history of
Europeans (as first suggested in ref. 10). PC1 aligns north-northwest/
south-southeast (NNW/SSE, 216 degrees) and accounts for
approximately twice the amount of variation as PC2 (0.30% versus
0.15%, first eigenvalue5 4.09, second eigenvalue5 2.04). However,
caution is required because the direction and relative strength of the
PC axes are affected by factors such as the spatial distribution of
samples (results not shown, also see ref. 9). More robust evidence
for the importance of a roughly NNW/SSE axis in Europe is that, in
these same data, haplotype diversity decreases from south to north
(A.A. et al., submitted). As the fine-scale spatial structure evident in
Fig. 1 suggests, European DNA samples can be very informative
about the geographical origins of their donors. Using a multi-
ple-regression-based assignment approach, one can place 50% of

individuals within 310 km of their reported origin and 90% within
700 km of their origin (Fig. 2 and Supplementary Table 4, results
based on populations with n. 6). Across all populations, 50% of
individuals are placed within 540 km of their reported origin, and
90% of individuals within 840 km (Supplementary Fig. 3 and
Supplementary Table 4). These numbers exclude individuals who
reported mixed grandparental ancestry, who are typically assigned
to locations between those expected from their grandparental origins
(results not shown). Note that distances of assignments from
reported origin may be reduced if finer-scale information on origin
were available for each individual.

Population structure poses awell-recognized challenge for disease-
association studies (for example, refs 11–13). The results obtained
here reinforce that the geographic distribution of a sample is impor-
tant to consider when evaluating genome-wide association studies
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Figure 1 | Population structure within Europe. a, A statistical summary of
genetic data from 1,387 Europeans based on principal component axis one
(PC1) and axis two (PC2). Small coloured labels represent individuals and
large coloured points represent median PC1 and PC2 values for each
country. The inset map provides a key to the labels. The PC axes are rotated
to emphasize the similarity to the geographic map of Europe. AL, Albania;
AT, Austria; BA, Bosnia-Herzegovina; BE, Belgium; BG, Bulgaria; CH,
Switzerland; CY, Cyprus; CZ, Czech Republic; DE, Germany; DK, Denmark;
ES, Spain; FI, Finland; FR, France; GB, United Kingdom; GR, Greece; HR,

Croatia; HU, Hungary; IE, Ireland; IT, Italy; KS, Kosovo; LV, Latvia; MK,
Macedonia; NO, Norway; NL, Netherlands; PL, Poland; PT, Portugal; RO,
Romania; RS, Serbia and Montenegro; RU, Russia, Sct, Scotland; SE,
Sweden; SI, Slovenia; SK, Slovakia; TR, Turkey; UA, Ukraine; YG,
Yugoslavia. b, A magnification of the area around Switzerland from
a showing differentiation within Switzerland by language. c, Genetic
similarity versus geographic distance. Median genetic correlation between
pairs of individuals as a function of geographic distance between their
respective populations.
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Dimensionality Reduction

Algorithm obtains an 
  -approximate solution in 
         many iterations.

[ J arXiv Aug 2011]

Convergence Analysis:

[        ]Sparse &
Low Rank

Martin Jaggi

Convex Optimization for Machine Learning

Goal:
Minimize a convex function f
over a compact convex 
domain D ⊂ Rn

Algorithm:
In each step, we greedily 
move towards the point in D 
that looks most promising
as given by the current 
linearization

Algorithm 1 Greedy on a Compact Convex Set
Input: Convex function f , convex set D, target accuracy ε
Output: ε-approximate solution for problem minx∈D f(x)
Pick an arbitrary starting point x(0) ∈ D
for k = 0 . . .∞ do

Let dx ∈ ∂f(x(k)) be a subgradient to f at x(k)

Let α := 2
k+2

Compute s := approx argmin
y∈D

yT dx

{Approximate the linearized primitive problem}
Update x(k+1) := x(k) + α(s− x(k))

end for

Convex Optimization 
without Projection Steps

f(x)

D ⊂ Rn
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Sparse Solutions
for Vector Problems

D =

�
unit simplex in Rn

�1-ball
⇒ ε-approximate solutions

of sparsity O
�
1
ε

�

(and this is best possible)

[Clarkson SODA ’08]

Low-Rank Solutions 
for Matrix Problems

[Hazan LATIN ’08]

D = symmetric matrices
of unit trace

⇒ ε-approximate solutions
of rank O

�
1
ε

�

(and this is best possible)

Applications for Matrix Problems 
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Parameterized Problems

Pathwise Optimization

min
x∈Sn

ft(x)

gt�(x) ≤ ε

Want: guarantee on 
the duality gap along 
the entire path,

There are                       many intervals

of piecewise constant     -approx. solutions.
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Matrix factorizations for recommender systems

The Netflix challenge:
17‘000 Movies
500‘000 Customers
100‘000‘000 Ratings
(Observed Entries ≈ 1%)
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v(1)

v(k)

u(1) u(k)

= 1 ⇔ „Angelina Jolie
            plays in movie j“

= 1 ⇔ „Customer i is male“

Given a small 
sample of entries 
of a matrix, we 
want to predict 
all its entries.

Most popular 
methods for this 
task use matrix 
factorizations,

Trace-Norm Optimization

A Simple Algorithm for Nuclear Norm Regularized Problems
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Abstract

Optimization problems with a nuclear norm
regularization, such as e.g. low norm matrix
factorizations, have seen many applications
recently. We propose a new approximation
algorithm building upon the recent sparse
approximate SDP solver of (Hazan, 2008).
The experimental efficiency of our method
is demonstrated on large matrix completion
problems such as the Netflix dataset. The al-
gorithm comes with strong convergence guar-
antees, and can be interpreted as a first theo-
retically justified variant of Simon-Funk-type
SVD heuristics. The method is free of tuning
parameters, and very easy to parallelize.

1. Introduction

This paper considers large scale convex optimization
problems with a nuclear norm regularization, as for in-
stance low norm matrix factorizations. Such formula-
tions occur in many machine learning and compressed
sensing applications such as dimensionality reduction,
matrix classification, multi-task learning and matrix
completion (Srebro et al., 2004; Candes & Tao, 2009).
Matrix completion by using matrix factorizations of
either low rank or low norm has gained a lot of atten-
tion in the area of recommender systems (Koren et al.,
2009) with the recently ended Netflix Prize competi-
tion.

Our new method builds upon the recent first-order op-
timization scheme for semi-definite programs (SDP) of
(Hazan, 2008) and has strong convergence guarantees.

We consider the following convex optimization prob-
lems over matrices:

min
X∈Rn×m

f(X) + µ||X||∗ (1)

Appearing in Proceedings of the 27 th International Confer-
ence on Machine Learning, Haifa, Israel, 2010. Copyright

2010 by the author(s)/owner(s).

and the corresponding constrained variant

min
X∈Rn×m, ||X||∗≤ t

2

f(X) (2)

where f(X) is any differentiable convex function (usu-
ally called the loss function), ||.||∗ is the nuclear norm
of a matrix, also known as the trace norm (sum of
the singular values, or �1-norm of the spectrum). Here
µ > 0 and t > 0 respectively are given parameters,
usually called the regularization parameter.

When choosing f(X) := ||A(X) − b||22 for some lin-
ear map A : Rn×m → Rp, the above formula-
tion (1) is the matrix generalization of the problem
minx∈Rn ||Ax − b||22 + µ||x||1, which is the important
�1-regularized least squares problem, also known as
the basis pursuit de-noising problem in compressed
sensing literature. The analogue vector variant of
(2) is the Lasso problem (Tibshirani, 1996) which is
minx∈Rn

�
||Ax− b||22

�� ||x||1 ≤ t
�
.

Recently (Toh & Yun, 2009; Liu et al., 2009) and (Ji
& Ye, 2009) independently proposed algorithms that
obtain an �-accurate solution to (1) in O(1/

√
�) steps,

by improving the algorithm of (Cai et al., 2008). More
recently also (Mazumder et al., 2009) and (Ma et al.,
2009) proposed algorithms in this line of so called sin-
gular value thresholding methods, but cannot guaran-
tee a convergence speed. Each step of all those algo-
rithms requires the computation of the singular value
decomposition (SVD) of a matrix of the same size as
the solution matrix, which is expensive even with the
currently available fast methods such as PROPACK.
Both (Toh & Yun, 2009) and (Ji & Ye, 2009) show
that the primal error of their algorithm is smaller than
� after O(1/

√
�) steps, using an analysis in the spirit

of (Nesterov, 1983).

We present a much simpler algorithm to solve prob-
lems of the form (2), which does not need any SVD
computations. We achieve this by transforming the
problem to a convex optimization problem on posi-
tive semi-definite matrices, and then using the approx-
imate SDP solver of Hazan (2008). Hazan’s algorithm

also called „trace norm“,
sum of singular valuesarbitrary convex 

function on matrices

noise/wind avalanche
Avalanche detection from Audio Data
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Applications for Vector Problems 

Finding the optimal 
hyperplane

(of maximum 
margin)

Support Vector 
Machine (SVM)

Perceptron

   -reg. Regression
SVR

Logistic Regression

Classification Regularized 
Regression

Compressed Sensing

Principal 
Component 

Analysis
Sparse PCA,
Robust PCA
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recovery of 

sparse vectors:

low-rank matrices:
trace-norm

or max-norm

-norm
-normor

minimize

Semidefinite Optimization

Text Classification and Similarity Measures

Risk 
(Covariance)

max
x

−xTAATx+ µ · bTx
Expected 

return

Finance: Mean-Variance Portfolio Analysis

comments

min
X

f(X)

s.t. T r(X) ≤ t

X � 0

min
X

f(X)

s.t. Xii ≤ t ∀i
X � 0

bounded trace-norm bounded max-norm

or also general semidefinite programs (SDPs)

(or also for the 
matrix max-norm)

[GJL ESA 2010]

[JS ICML 2010]

[GJ SoCG 2009]

Use a trace norm 
regularization!


